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Chapter 1

Limits

1.1 Introduction to Limits
Almost 2,500 years ago, the Greek philosopher Zeno of Elea gifted the world
with a set of philosophical paradoxes that provide the foundation for how we
will begin our study of calculus. Perhaps the most famous of Zeno’s paradoxes
is the paradox of Achilles and the Tortoise.

1.1.1 Achilles and the Tortoise
In the paradox of Achilles and the Tortoise, the Greek hero Achilles is in a
race with a tortoise. Obviously the tortoise is much slower than Achilles, and
so the tortoise gets a 100m head start. The race begins, and while the tortoise
moves as quickly as it can, Achilles has the obvious advantage. They both are
running at a constant speed, with Achilles running faster. Achilles runs 100m,
catching up to the tortoise’s starting point.

In the meantime, the tortoise has moved 2 meters. Achilles has almost
caught up and passed the tortoise at this point! In a very short time, Achilles
is able to run the 2 meters to catch up to where the tortoise was. Unfortunately,
in that short amount of time, the tortoise has kept on moving, and is farther
along by now.

Every time Achilles catches up to where the tortoise was, the tortoise has
moved farther along, and Achilles has to keep catching up.

Can Achilles, the paragon of athleticism, ever catch the tortoise?

1.1.2 A Modern Retelling
A college student is excited about having enrolled in their first calculus class.
On the first day of class, they head to class. When they enter the hallway with
their classroom at the end, they take a breath and excitedly head to class.

In order to get to class, though, they have to travel halfway down the
hallway. Almost there.

Now, to go the rest of the way, the student will half to get to the point that
is halfway between them and the door. Getting closer.

They’re getting excited. Finally, their first calculus class! But to get to the
class, they have to reach the point halfway between them and the door.

Their smile starts fading. They repeat the process, and go halfway from
their position to the door. They’re closer, but not there yet.
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If they keep having to reach the new halfway point, and that halfway point
is never actually at the door, then will they ever get there?

Halfway to the door, then halfway again, closer and closer without ever
getting there.

Will the student ever get there, or are they doomed to keep getting closer
and closer without ever reaching the door?

1.2 The Definition of the Limit

1.2.1 Defining a Limit
Activity 1.2.1 Close or Not? We’re going to try to think how we might
define ”close”-ness as a property, but, more importantly, we’re going to try to
realize the struggle of creating definitions in a mathematical context. We want
our definition to be meaningful, precise, and useful, and those are hard goals
to reach! Coming to some agreement on this is a particularly tricky task.

(a) For each of the following pairs of things, decide on which pairs you would
classify as ”close” to each other.

• You, right now, and the nearest city with a population of 1 million
or higher

• Your two nostrils
• You and the door of the room you are in
• You and the person nearest you
• The floor of the room you are in and the ceiling of the room you are

in

(b) For your classification of ”close,” what does ”close” mean? Finish the
sentence: A pair of objects are close to each other if...

(c) Let’s think about how close two things would have to be in order to
satisfy everyone’s definition of ”close.” Pick two objects that you think
everyone would agree are ”close,” if by ”everyone” we meant:

• All of the people in the building you are in right now.
• All of the people in the city that you are in right now.
• All of the people in the country that you are in right now.
• Everyone, everywhere, all at once.

(d) Let’s put ourselves into the context of functions and numbers. Consider
the linear function y = 4x − 1. Our goal is to find some x-values that,
when we put them into our function, give us y-value outputs that are
”close” to the number 2. You get to define what close means.
First, evaluate f(0) and f(1). Are these y-values ”close” to 2, in your
definition of ”close?”

(e) Pick five more, different, numbers that are ”close” to 2 in your definition
of ”close.” For each one, find the x-values that give you those y-values.

(f) How far away from x = 3
4 can you go and still have y-value outputs that

are ”close” to 2?
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To wrap this up, think about your points that you have: you have a list of
x-coordinates that are clustered around x = 3

4 where, when you evaluate y =
4x− 1 at those x-values, you get y-values that are ”close” to 2. Great!

Do you think others will agree? Or do you think that other people might
look at your list of y-values and decide that some of them aren’t close to 2?

Do you think you would agree with other peoples’ lists? Or you do think
that you might look at other peoples’ lists of y-values and decide that some of
them aren’t close to 2?
Definition 1.2.1 Limit of a Function. For the function f(x) defined at
all x-xalues around a (except maybe at x = a itself), we say that the limit of
f(x) as x approaches a is L if f(x) is arbitrarily close to the single, real number
L whenever x is sufficiently close to, but not equal to, a. We write this as:

lim
x→a

f(x) = L

or sometimes we write f(x) → L when x → a. ♢
When we say ”around x = a”, we really just mean on either side of it. We

can clarify if we want.

Definition 1.2.2 Left-Sided Limit. For the function f(x) defined at all
x-xalues around and less than a, we say that the left-sided limit of f(x) as
x approaches a is L if f(x) is arbitrarily close to the single, real number L
whenever x is sufficiently close to, but less than, a. We write this as:

lim
x→a−

f(x) = L

or sometimes we write f(x) → L when x → a−. ♢
Definition 1.2.3 Right-Sided Limit. For the function f(x) defined at all
x-xalues around and greater than a, we say that the right-sided limit of f(x)
as x approaches a is L if f(x) is arbitrarily close to the single, real number L
whenever x is sufficiently close to, but greater than, a. We write this as:

lim
x→a+

f(x) = L

or sometimes we write f(x) → L when x → a+. ♢
Theorem 1.2.4 Mismatched Limits. For a function f(x), if both
lim

x→a−
f(x) ̸= lim

x→a+
f(x), then we say that lim

x→a
f(x) does not exist. That is,

there is no single real number L that f(x) is arbitrarily close to for x-values
that are sufficiently close to, but not equal to, x = a.

1.2.2 Approximating Limits Using Our New Definition
Activity 1.2.2 Approximating Limits. For each of the following graphs
of functions, approximate the limit in question. When you do so, approximate
the values of the relevant one-sided limits as well.

(a) Approximate lim
x→1

f(x) using the graph of the function f(x) below.
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Figure 1.2.5
(b) Approximate lim

x→2
g(x) using the graph of the function g(x) below.

Figure 1.2.6
(c) Approximate the following three limits using the graph of the function

h(x) below.

• lim
x→−1

h(x)

• lim
x→0

h(x)

• lim
x→2

h(x)

Figure 1.2.7
(d) Why do we say these are ”approximations” or ”estimations” of the limits

we’re interested in?

(e) Are there any limit statements that you made that you are 100% confident
in? Which ones?

(f) Which limit statements are you least confident in? What about them
makes them ones you aren’t confident in?

(g) What extra details would you like to see to increase the confidence in
your estimations? Are there changes we could make to the way these
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functions are represented that would make these approximations better
or easier to make?

Activity 1.2.3 Approximating Limits Numerically. For each of the
following tables of function values, approximate the limit in question. When
you do so, approximate the values of the relevant one-sided limits as well.

(a) Approximate lim
x→1

f(x) using the table of values of f(x) below.

Table 1.2.8
x 0.5 0.9 0.99 1 1.01 1.1 1.5
f(x) 8.672 9.2 9.0001 -7 8.9998 9.5 7.59

(b) Approximate lim
x→−3

g(x) using the table of values of g(x) below.

Table 1.2.9
x -3.5 -3.1 -3.01 -3 -2.99 -2.9 -2.5
g(x) -4.41 -3.89 -4.003 -4 7.035 2.06 -4.65

(c) Approximate lim
x→π

h(x) using the table of values of h(x) below.

Table 1.2.10
x 3.1 3.14 3.141 π 3.142 3.15 3.2
h(x) 6 6 6 undefined 5.915 6.75 8.12

(d) Are you 100% confident about the existence (or lack of existence) of any
of these limits?

(e) What extra details would you like to see to increase the confidence in
your estimations? Are there changes we could make to the way these
functions are represented that would make these approximations better
or easier to make?

1.3 Evaluating Limits

1.3.1 Adding Precision to Our Estimations
Activity 1.3.1 From Estimating to Evaluating Limits (Part 1). Let’s
consider the following graphs of functions f(x) and g(x).

Figure 1.3.1 Graph of the
function f(x).

Figure 1.3.2 Graph of the
function g(x).

(a) Estimate the values of the following limits. If you believe that the limit
does not exist, say so and explain why.

• lim
x→1−

f(x)
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• lim
x→1+

f(x)

• lim
x→1

f(x)

(b) Estimate the values of the following limits. If you believe that the limit
does not exist, say so and explain why.

• lim
x→2−

g(x)

• lim
x→2+

g(x)

• lim
x→2

g(x)

(c) Find the values of f(1) and g(2).

(d) For the limits and function values above, which of these are you most
confident in? What about the limit, function value, or graph of the
function makes you confident about your answer?
Similarly, which of these are you the least confident in? What about
the limit, function value, or graph of the function makes you not have
confidence in your answer?

Activity 1.3.2 From Estimating to Evaluating Limits (Part 2). Let’s
consider the following graphs of functions f(x) and g(x), now with the added
labels of the equations defining each part of these functions.

Figure 1.3.3 Graph of the
function f(x).

Figure 1.3.4 Graph of the
function g(x).

(a) Estimate the values of the following limits. If you believe that the limit
does not exist, say so and explain why.

• lim
x→1−

f(x)

• lim
x→1+

f(x)

• lim
x→1

f(x)

(b) Estimate the values of the following limits. If you believe that the limit
does not exist, say so and explain why.

• lim
x→2−

g(x)

• lim
x→2+

g(x)

• lim
x→2

g(x)

(c) Does the addition of the function rules change the level of confidence you
have in these answers? What limits are you more confident in with this
added information?
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(d) Consider these functions without their graphs:

f(x) =


2− x when x < 1

3 when x = 1
x2

4 − x
2 + 5

4 when x > 1

g(x) =

{
3− (x− 1)2 when x ≤ 2

(x− 3)2 when x > 2

Find the limits lim
x→1

f(x) and lim
x→2

g(x). Compare these values of f(1) and
g(2): are they related at all?

1.3.2 Limit Properties
Theorem 1.3.5 Combinations of Limits. If f(x) and g(x) are two func-
tions defined at x-values around, but maybe not at, x = a and lim

x→a
f(x) and

lim
x→a

g(x) both exist, then we can evaluate limits of combinations of these func-
tions.

1. Sums: The limit of the sum of f(x) and g(x) is the sum of the limits of
f(x) and g(x):

lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x)

2. Differences: The limit of a difference of f(x) and g(x) is the difference
of the limits of f(x) and g(x):

lim
x→a

(f(x)− g(x)) = lim
x→a

f(x)− lim
x→a

g(x)

3. Coefficients: If k is some real number coefficient, then:

lim
x→a

kf(x) = k lim
x→a

f(x)

4. Products: The limit of a product of f(x) and g(x) is the product of the
limits of f(x) and g(x):

lim
x→a

(f(x) · g(x)) =
(

lim
x→a

f(x)
)
·
(

lim
x→a

g(x)
)

5. Quotients: The limit of a quotient of f(x) and g(x) is the quotient of the
limits of f(x) and g(x) (provided that you do not divide by 0):

lim
x→a

(
f(x)

g(x)

)
=

(
lim
x→a

f(x)
)

(
lim
x→a

g(x)
) (if lim

x→a
g(x) ̸= 0)

Theorem 1.3.6 Limits of Two Basic Functions. Let a be some real
number.

1. Limit of a Constant Function: If k is some real number constant, then:

lim
x→a

k = k
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2. Limit of the Identity Function:

lim
x→a

x = a

Activity 1.3.3 Limits of Polynomial Functions. We’re going to use a
combination of properties from Theorem 1.3.5 and Theorem 1.3.6 to think a bit
more deeply about polynomial functions. Let’s consider a polynomial function:

f(x) = 2x4 − 4x3 +
x

2
− 5

(a) We’re going to evaluate the limit lim
x→1

f(x). First, use the properties
from Theorem 1.3.5 to re-write this limit as 4 different limits added or
subtracted together.

Answer.
lim
x→1

(2x4)− lim
x→1

(4x3) + lim
x→1

(x
2

)
− lim

x→1
5

(b) Now, for each of these limits, re-write them as products of things until you
have only limits of constants and identity functions, as in Theorem 1.3.6.
Evaluate your limits.

Hint.
2
(

lim
x→1

x
)4

− 4
(

lim
x→1

x
)3

+
1

2

(
lim
x→1

x
)
− lim

x→1
5

(c) Based on the definition of a limit (Definition 1.2.1), we normally say that
lim
x→1

f(x) is not dependent on the value of f(1). Why do we say this?

(d) Compare the values of lim
x→1

f(x) and f(1). Why do these values feel
connected?

(e) Come up with a new polynomial function: some combination of coef-
ficients with x’s raised to natural number exponents. Call your new
polynomial function g(x). Evaluate lim

x→−1
g(x) and compare the value to

g(−1). Explain why these values are the same.

(f) Explain why, for any polynomial function p(x), the limit lim
x→a

p(x) is the
same value as p(a).

Theorem 1.3.7 Limits of Polynomials. If p(x) is a polynomial function
and a is some real number, then:

lim
x→a

p(x) = p(a)

1.4 First Indeterminate Forms
Activity 1.4.1 Limits of (Slightly) Different Functions.

(a) Using the graph of f(x) below, approximate lim
x→1

f(x).
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Figure 1.4.1

(b) Using the graph of the slightly different function g(x) below, approximate
lim
x→1

g(x).

Figure 1.4.2

(c) Compare the values of f(1) and g(1) and discuss the impact that this
difference had on the values of the limits.

(d) For the function r(t) defined below, evaluate the limit lim
x→4

r(t).

r(t) =


2t− 4

t when t < 4

8 when t = 4

t2 − t− 5 when t > 4

(e) For the slightly different function s(t) defined below, evaluate the limit
lim
x→4

s(t).

s(t) =

{
2t− 4

t when t ≤ 4

t2 − t− 5 when t > 4

(f) Do the changes in the way that the function was defined impact the
evaluation of the limit at all? Why not?

Theorem 1.4.3 Limits of (Slightly) Different Functions. If f(x) and
g(x) are two functions defined at x-values around a (but maybe not at x = a
itself) with f(x) = g(x) for the x-values around a but with f(a) ̸= g(a) then
lim
x→a

f(x) = lim
x→a

g(x), if the limits exist.
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1.4.1 A First Introduction to Indeterminate Forms
Definition 1.4.4 Indeterminate Form. We say that a limit has an in-
determinate form if the general structure of the limit could take on any
different value, or not exist, depending on the specific circumstances.

For instance, if lim
x→a

f(x) = 0 and lim
x→a

g(x) = 0, then we say that the limit

lim
x→a

(
f(x)

g(x)

)
has an indeterminate form. We typically denote this using the

informal symbol 0
0 , as in:

lim
x→a

(
f(x)

g(x)

)
?→ 0

0
.

♢
Activity 1.4.2

(a) Were going to evaluate lim
x→3

(
x2 − 7x+ 12

x− 3

)
.

• First, check that we get the indeterminate form 0
0 when x → 3.

• Now we want to find a new function that is equivalent to f(x) =
x2 − 7x+ 12

x− 3
for all x-values other than x = 3. Try factoring the

numerator, x2 − 7x+ 12. What do you notice?
• ”Cancel” out any factors that show up in the numerator and denom-

inator. Make a special note about what that factor is.

• This function is equivalent to f(x) =
x2 − 7x+ 12

x− 3
except at x = 3.

The difference is that this function has an actual function output at
x = 3, while f(x) doesn’t. Evaluate the limit as x → 3 for your new
function.

(b) Now we’ll evaluate a new limit: lim
x→1

(√
x2 + 3− 2

x2 − 5x+ 4

)
.

• First, check that we get the indeterminate form 0
0 when x → 1.

• Now we want a new function that is equivalent to g(x) =√
x2 + 3− 2

x2 − 5x+ 4
for all x-values other than x = 1. Try multiplying

the numerator and the denominator by (
√
x2 + 3 + 2). We’ll call

this the ”conjugate” of the numerator.
• In your multiplication, confirm that (

√
x2 + 3 − 2)(

√
x2 + 3 + 2) =

(x2 + 3)− 4.
• Try to factor the new numerator and denominator. Do you notice

anything? Can you ”cancel” anything? Make another note of what
factor(s) you cancel.

• This function is equivalent to g(x) =

√
x2 + 3− 2

x2 − 5x+ 4
except at x = 1.

The difference is that this function has an actual function output at
x = 1, while g(x) doesn’t. Evaluate the limit as x → 1 for your new
function.

(c) Our last limit in this activity is going to be lim
x→−2

(
3− 3

x+3

x2 + 2x

)
.
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• Again, check to see that we get the indeterminate form 0
0 when

x → −2.

• Again, we want a new function that is equivalent to h(x) =
3− 3

x+3

x2 + 2x
for all x-values other than x = −2. Try completing the subtraction
in the numerator, 3− 3

x+3 , using ”common denominators.”
• Try to factor the new numerator and denominator(s). Do you notice

anything? Can you ”cancel” anything? Make another note of what
factor(s) you cancel.

• For the final time, we’ve found a function that is equivalent to

h(x) =
3− 3

x+3

x2 + 2x
except at x = −2. The difference is that this func-

tion has an actual function output at x = −2, while h(x) doesn’t.
Evaluate the limit as x → −2 for your new function.

(d) In each of the previous limits, we ended up finding a factor that was
shared in the numerator and denominator to cancel. Think back to each
example and the factor you found. Why is it clear that these must have
been the factors we found to cancel?

(e) Let’s say we have some new function f(x) where lim
x→5

f(x)
?→ 0

0
. You

know, based on these examples, that you’re going to apply some algebra
trick to re-write your function, factor, and cancel. Can you predict what
you will end up looking for to cancel in the numerator and denominator?
Why?

1.4.2 What if There Is No Algebra Trick?
We’ve seen some nice examples above where we were able to use some algebra
to manipulate functions in such was as to force some shared factor in the
numerator and denominator into revealing itself. From there, we were able to
apply Theorem 1.4.3 and swap out our problematic function with a new one,
knowing that the limit would be the same.

But what if we can’t do that? What if the specific structure of the function
seems resistent somehow to our attempts at wielding algebra?

This happens a lot, and we’ll investigate some more of those types of limits
in Section ??. For now, though, let’s look at a very famous limit and reason
our way through the indeterminate form.
Activity 1.4.3 Let’s consider a new limit:

lim
θ→0

sin(θ)
θ

.

This one is strange!

(a) Notice that this function, f(θ) = sin(θ)
θ

, is resistent to our algebra tricks:

• There’s nothing to ”factor” here, since our trigonometric function is
not a polynomial.

• We can’t use a trick like the ”conjugate” to multiply and re-write,
since there’s no square roots and also only one term in the numera-
tor.

• There aren’t any fractions that we can combine by addition or sub-
traction.
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(b) Be frustrated at this new limit for resisting our algebra tricks.

(c) Now let’s think about the meaning of sin(θ) and even θ in general. In this
text, we will often use Greek letters, like θ, to represent angles. In general,
these angles will be measured in radians (unless otherwise specified). So
what does the sine function do or tell us? What is a radian?

Hint 1. On the unit circle, if we plot some point at an angle of θ,
then the coordinates of that point can be represented with trig functions!
Which ones?

Hint 2. The length of the curve defining a unit circle is 2π. This also
corresponds to the angle we would use to represent moving all the way
around the circle. What must the length of the portion of the circle be
up to some point at an angle θ?

(d) Let’s visualize our limit, then, by comparing the length of the arc and
the height of the point as θ → 0.

(e) Explain to yourself, until you are absolutely certain, why the two lengths
must be the same in the limit as θ → 0. What does this mean about
lim
θ→0

sin(θ)
θ

?

1.5 Limits Involving Infinity
Two types of limits involving infinity. In both cases, we’ll mostly just consider
what happens when we divide by small things and what happens when we
divide by big things. We can summarize this here, though:

Fractions with small denominators are big, and fractions with big denomi-
nators are small.
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1.5.1 Infinite Limits
Activity 1.5.1 What Happens When We Divide by 0? First, let’s make
sure we’re clear on one thing: there is no real number than is represented as
some other number divided by 0.

When we talk about ”dividing by 0” here (and in Section 1.4), we’re talking
about the behavior of some function in a limit. We want to consider what it
might look like to have a function that involves division where the denominator
gets arbitrarily close to 0 (or, the limit of the denominator is 0).

(a) Remember when, once upon a time, you learned that dividing one a
number by a fraction is the same as multiplying the first number by the
reciprocal of the fraction? Why is this true?

(b) What is the relationship between a number and its reciprocal? How does
the size of a number impact the size of the reciprocal? Why?

(c) Consider 12÷N . What is the value of this division problem when:

• N = 6?
• N = 4?
• N = 3?
• N = 2?
• N = 1?

(d) Let’s again consider 12÷N . What is the value of this division problem
when:

• N = 1
2?

• N = 1
3?

• N = 1
4?

• N = 1
6?

• N = 1
1000?

(e) Consider a function f(x) = 12
x . What happens to the value of this func-

tion when x → 0+? Note that this means that the x-values we’re consid-
ering most are very small and positive.

(f) Consider a function f(x) = 12
x . What happens to the value of this func-

tion when x → 0−? Note that this means that the x-values we’re consid-
ering most are very small and negative.

Definition 1.5.1 Infinite Limit. We say that a function f(x) has an infinite
limit at a if f(x) is arbitrarily large (positive or negative) when x is sufficiently
close to, but not equal to, x = a.

We would then say, depending on the sign of the values of f(x), that:

lim
x→a−

f(x) = ±∞ lim
x→a+

f(x) = ±∞.

If the sign of both one-sided limits are the same, we can say that lim
x→a

f(x) =

±∞ (depending on the sign), but it is helpful to note that, by the definition of
the Limit of a Function, this limit does not exist, since f(x) is not arbitrarily
close to a single real number. ♢
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Theorem 1.5.2 Dividing by 0 in a Limit. If f(x) = g(x)

h(x)
with lim

x→a
g(x) ̸=

0 and lim
x→a

h(x) = 0, then f(x) has an Infinite Limit at a. We will often denote
this behavior as:

lim
x→a

f(x)
?→ #

0

where # is meant to be some shorthand representation of a non-zero limit in
the numerator (often, but not necessarily, some real number).

Evaluating Infinite Limits.

Once we know that lim
x→a

f(x)
?→ #

0
, we know a bunch of information

right away!

• This limit doesn’t exist.

• The function f(x) has a vertical asymptote at x = a, causing
these unbounded y-values near x = a.

• The one sided limits must be either ∞ or −∞.

• We only need to focus on the sign of the one sided limits! And
signs of products and quotients are easy to follow.

So a pretty typical process is to factor as much as we can, and check
the sign of each factor (in a numerator or denominator) as x → a− and
x → a+. From there, we can find the sign of f(x) in both of those cases,
which will tell us the one-sided limit.

Example 1.5.3 For each function, find the relevant one-sided limits at the
input-value mentioned. If you can use a two-sided limit statement to discuss
the behavior of the function around this input-value, then do so.

(a)
(
2x2 − 5x+ 1

x2 + 8x+ 16

)
and x = −4

(b)
(

4x2 − x5

x2 − 4x+ 3

)
and x = 1

(c) sec(θ) and θ =
π

2

□

1.5.2 End Behavior Limits
Activity 1.5.2 What Happens When We Divide by Infinity? Again, we
need to start by making something clear: if we were really going to try divide
some real number by infinity, then we would need to re-build our definition
of what it means to divide. In the context we’re in right now, we only have
division defined as an operation for real (and maybe complex) numbers. Since
infinity is neither, then we will not literally divide by infinity.

When we talk about ”dividing by infinity” here, we’re again talking about
the behavior of some function in a limit. We want to consider what it might
look like to have a function that involves division where the denominator gets
arbitrarily large (positive or negative) (or, the limit of the denominator is infi-
nite).
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(a) Let’s again consider 12÷N . What is the value of this division problem
when:

• N = 1?
• N = 6?
• N = 12?
• N = 24?
• N = 1000?

(b) Let’s again consider 12÷N . What is the value of this division problem
when:

• N = −1?
• N = −6?
• N = −12?
• N = −24?
• N = −1000?

(c) Consider a function f(x) = 12
x . What happens to the value of this func-

tion when x → ∞? Note that this means that the x-values we’re consid-
ering most are very large and positive.

(d) Consider a function f(x) = 12
x . What happens to the value of this func-

tion when x → −∞? Note that this means that the x-values we’re
considering most are very large and negative.

(e) Why is there no difference in the behavior of f(x) as x → ∞ compared
to x → −∞ when the sign of the function outputs are opposite (f(x) > 0
when x → ∞ and f(x) < 0 when x → −∞)?

Definition 1.5.4 Limit at Infinity. If f(x) is defined for all large and
positive x-values and f(x) gets arbitrarily close to the single real number L
when x gets sufficiently large, then we say:

lim
x→∞

f(x) = L.

Similarly, if f(x) is defined for all large and negative x-values and f(x) gets
arbitrarily close to the single real number L when x gets sufficiently negative,
then we say:

lim
x→−∞

f(x) = L.

In the case that f(x) has a limit at infinity that exists, then we say f(x)
has a horizontal asymptote at y = L.

Lastly, if f(x) is defined for all large and positive (or negative) x-values and
f(x) gets arbitrarily large and positive (or negative) when x gets sufficiently
large (or negative), then we could say:

lim
x→−∞

f(x) = ±∞ or lim
x→∞

f(x) = ±∞.

♢
Because the primary focus for limits at infinity is the end behavior of a

function, we will often refer to these limits as end behavior limits.
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Theorem 1.5.5 End Behavior of Reciprocal Power Functions. If p is
a positive real number, then:

lim
x→∞

(
1

xp

)
= 0 and lim

x→−∞

(
1

xp

)
= 0.

Theorem 1.5.6 Polynomial End Behavior Limits. For some polynomial
function:

p(x) = anx
n + an−1x

n−1 + ...+ a2x
2 + a1x+ a0

with n a positive integer (the degree) and all of the coefficients a0, a1, ..., an real
numbers (with an ̸= 0), then

lim
x→∞

p(x) = lim
x→∞

anx
n

That is, the leading term (the term with the highest exponent) defines the
end behavior for the whole polynomial function.
Proof. Consider the polynomial function:

p(x) = anx
n + an−1x

n−1 + ...+ a2x
2 + a1x+ a0

where n is some integer and ak is a real number for k = 0, 1, 2, ..., n. For
simplicity, we will consider only the limit as x → ∞, but we could easily repeat
this exact proof for the case where x → −∞.
Before we consider this limit, we can factor out xn, the variable with the highest
exponent:

p(x) = anx
n + an−1x

n−1 + ...+ a2x
2 + a1x+ a0

= xn

(
anxn

xn
+

an−1x
n−1

xn
+ ...+

a2x
2

xn
+

a1x

xn
+

a0
xn

)
= xn

(
an +

an−1

x
+ ...+

a2
xn−2

+
a1

xn−1
+

a0
xn

)
Now consider the limit of this product:

lim
x→∞

p(x) = lim
x→∞

xn
(
an +

an−1

x
+ ...+

a2
xn−2

+
a1

xn−1
+

a0
xn

)
=
(

lim
x→∞

xn
)(

lim
x→∞

an +
an−1

x
+ ...+

a2
xn−2

+
a1

xn−1
+

a0
xn

)
We can see that in the second limit, we have a single constant term, an, followed
by reciprocal power functions. Then, due to Theorem 1.5.5, we know that the
second limit will by an, since the reciprocal power functions will all approach
0.

lim
x→∞

p(x) =
(

lim
x→∞

xn
)(

lim
x→∞

an +
an−1

x
+ ...+

a2
xn−2

+
a1

xn−1
+

a0
xn

)
=
(

lim
x→∞

xn
)
(an + 0 + ...+ 0 + 0 + 0)

=
(

lim
x→∞

xn
)
(an)

= lim
x→∞

anx
n

And so lim
x→∞

p(x) = lim
x→∞

anx
n as we claimed. ■

Example 1.5.7 For each function, find the limits as x → ∞ and x → −∞.
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(a)
(
2x2 − 5x+ 1

x2 + 8x+ 16

)

(b)
(

4x2 − x5

x2 − 4x+ 3

)

(c) |x|
3x

□
Activity 1.5.3 Matching the Limits.

(a) We’re going to look at four graphs of functions, as well as a list of limit
statements. Match the limit statements with the graphs that match that
behavior. Note that is is possible for a limit to be relevant on more than
one graph.

(b) Now consider these four function definitions. Using your knowledge of
limits, as well as the matching you’ve already done, match the definitions
of these four functions with the graphs that go with them, and then also
the limits that are relevant. (These limits will already be matched with
the graphs, so you don’t need to do further work here).

1.6 The Squeeze Theorem
Activity 1.6.1 A Weird End Behavior Limit. In this activity, we’re
going to find the following limit:

lim
x→∞

(
sin2(x)

x2 + 1

)
.

This limit is a bit weird, in that we really haven’t looked at trigonometric
functions that much. We’re going to start by looking at a different limit in the
hopes that we can eventually build towards this one.

(a) Consider, instead, the following limit:

lim
x→∞

(
1

x2 + 1

)
.

Find the limit and connect the process or intuition behind it to at least
one of the results from this text.

Hint 1. Start with Theorem 1.3.5 to think about the numerator and
denominator separately.

Hint 2. Can you use Theorem 1.5.6 in the denominator?

Hint 3. Is Theorem 1.5.5 relevant?

(b) Let’s put this limit aside and briefly talk about the sine function. What
are some things to remember about this function? What should we know?
How does it behave?

(c) What kinds of values doe we expect sin(x) to take on for different values
of x?

≤ sin(x) ≤
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(d) What happens when we square the sine function? What kinds of values
can that take on?

≤ sin2(x) ≤

(e) Think back to our original goal: we wanted to know the end behavior of
sin2(x)

x2 + 1
. Right now we have two bits of information:

• We know lim
x→∞

(
1

x2 + 1

)
.

• We know some information about the behavior of sin2(x). Specifi-
cally, we have some bounds on its values.

Can we combine this information?
In your inequality above, multiply

(
1

x2+1

)
onto all three pieces of the

inequality. Make sure you’re convinced about the direction or order of
the inequality and whether or not it changes with this multiplication.

x2 + 1︸ ︷︷ ︸
call this f(x)

≤ sin2(x)

x2 + 1
≤

x2 + 1︸ ︷︷ ︸
call this h(x)

(f) For your functions f(x) and h(x), evaluate lim
x→∞

f(x) and lim
x→∞

h(x).

(g) What do you think this means about the limit we’re interested in,

lim
x→∞

(
sin2(x)

x2 + 1

)
?

Theorem 1.6.1 The Squeeze Theorem. For some functions f(x), g(x),
and h(x) which are all defined and ordered f(x) ≤ g(x) ≤ h(x) for x-values
near x = a (but not necessarily at x = a itself), and for some real number L,
if we know that

lim
x→a

f(x) = L = lim
x→a

h(x)

then we also know that lim
x→a

g(x) = L.

Activity 1.6.2 Sketch This Function Around This Point.

(a) Sketch or visualize the functions f(x) = x2 + 3 and h(x) = 2x + 2,
especially around x = 1.

Hint.
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(b) Sketch some other function, g(x) where f(x) ≤ g(x) ≤ h(x) for the x-
values around (byt maybe not at) x = 1.

(c) Use the Squeeze Theorem to evaluate and explain lim
x→1

g(x) for your func-
tion g(x).

(d) Is this limit dependent on the specific version of g(x) that you sketched?
Would this limit be different for someone else’s choice of g(x) given the
same parameters?

(e) What information must be true (if anything) about lim
x→3

g(x) and
lim
x→0

g(x)?

Do we know that these limits exist? If they do, do we have information
about their values?

1.7 Continuity and the Intermediate Value The-
orem

1.7.1 Continuity as Connectedness
1.7.2 Continuity as Classification
Definition 1.7.1 Continuous at a Point. The function f(x) is continuous
at an x-value in the domain of f(x) if x = a if lim

x→a
f(x) = f(a).

If f(x) is not continuous at x = a, but one of the one-sided limits is equal
to the function output, then we can define directional continuity at that
point:

• We say f(x) is continuous on the left at x = a when lim
x→a−

f(x) = f(a).

• We say f(x) is continuous on the right at x = a when lim
x→a+

f(x) =

f(a).

♢
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Definition 1.7.2 Continuous on an Interval. We say that f(x) is con-
tinuous on the interval (a, b) if f(x) is continuous at every x-value with
a < x < b.

If f(x) is continuous on the right at x = a and/or continuous on the left at
x = b, then we will say that f(x) is continuous on the interval [a, b), (a, b], or
[a, b], whichever is relevant. ♢

1.7.3 Discontinuities

Where is a Function not Continuous?

Most of the functions that we consider in this text will be continuous
everywhere that it makes sense: on their domain. That is, if there is
a point defined at some x-value, it is likely that the function’s limit
matches the y-value of the point. More specifically, though:

• A function is discontinuous at any location that results in an
infinite limit. These are locations where f(x) is undefined and
the limit is infinite (and so doesn’t exist).

• A function is, in general, discontinuous wherever it is undefined.
This seems silly to say! We probably could have left this unsaid.

• A function that is defined as a piecewise function could be dis-
continuous at locations where the pieces meet: maybe the limit
doesn’t exist, or maybe the function value is not defined, or maybe
the limit exists and the function value is defined but they do not
match.

1.7.4 Intermediate Value Theorem
Theorem 1.7.3 Intermediate Value Theorem. If f(x) is a function that
is continuous on [a, b] with f(a) ̸= f(b) and L is any real number between f(a)
and f(b) (either f(a) < L < f(b) or f(b) < L < f(a)), then there exists some
c between a and b (a < c < b) such that f(c) = L.
This theorem was stated as early as the 5th century BCE by Bryson of Her-

aclea. Back then, a really interesting problem was related to ”squaring the
circle.” That is, given a circle with some measurable radius, can we construct a
square with equal area? This is obviously true, in that we can just use a square
with the side length r

√
π. What we typically mean by ”construct,” though, is

to create this square using only a compass and straightedge (a ruler without
length markings) and only a finite number of steps. This was finally proven to
be impossible in 1882, approximately 2300 years later.

Bryson of Heraclea knew that the square itself existed (even if he couldn’t
construct it) because he was able to find a circle with area less than the square
(by inscribing a circle inside of the square) and a circle with area greater than
the square (where the square is inscribed in the circle). Since he posited that
he could increase the size of the circle in a continuous manner (without using
those words), he claimed that a square with area equal to that of the circle
must exist, since the area of the circle passes through all values from the smaller
area to the larger area.
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Derivatives

2.1 Introduction to Derivatives
We’ll start this off by thinking about slopes. Before we begin, you should be
able to answer the following questions:

• What is a slope? How could you describe it?

• How do you calculate the slope of a line between two points?

• If we have a function f(x) and we pick two points on the curve of the
function, what does the slope of a straight line connecting the two points
tell us? What kind of behavior about f(x) does this slope describe?

2.1.1 Defining the Derivative
Activity 2.1.1 Thinking about Slopes. We’re going to calculate and make
some conjectures about slopes of lines between points, where the points are on
the graph of a function. Let’s define the following function:

f(x) =
1

x+ 2
.

(a) We’re going to calculate a lot of slopes! Calculate the slope of the line
connecting each pair of points on the curve of f(x):

• (−1, f(−1)) and (0, f(0))

• (−0.5, f(−0.5)) and (0, f(0))

• (−0.1, f(−0.1)) and (0, f(0))

• (−0.001, f(−.001)) and (0, f(0))

(b) Let’s calculate another group of slopes. Find the slope of the lines con-
necting these pairs of points:

• (0, f(0)) and (1, f(1))

• (0, f(0)) and (0.5, f(0.5))

• (0, f(0)) and (0.1, f(0.1))

• (0, f(0)) and (0.001, f(0.001))

(c) Just to make it clear what we’ve done, lay out your slopes in this table:

21
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Between (0, f(0)) and... Slope
(1, f(1))

(0.5, f(0.5))

(0.1, f(0.1))

(0.01, f(0.01))

(−0.01, f(−0.01))

(−0.1, f(−0.1))

(−0.5, f(−0.5))

(−1, f(−1))

(d) Now imagine a line that is tangent to the graph of f(x) at x = 0. We are
thinking of a line that touches the graph at x = 0, but runs along side of
the curve there instead of through it.
Make a conjecture about the slope of this line, using what we’ve seen
above.

(e) Can you represent the slope you’re thinking of above with a limit? What
limit are we approximating in the slope calculations above? Set up the
limit and evaluate it, confirming your conjecture.

Activity 2.1.2 Finding a Tangent Line. Let’s think about a new function,
g(x) =

√
2− x. We’re going to think about this function around the point at

x = 1.

(a) Ok, we are going to think about this function at this point, so let’s find
the coordinates of the point first. What’s the y-value on our curve at
x = 1?

(b) Use a limit similar to the one you constructed in Activity 2.1.1 to find
the slope of the line tangent to the graph of g(x) at x = 1.

(c) Now that you have a slope of this line, and the coordinates of a point
that the line passes through, can you find the equation of the line?

Definition 2.1.1 Derivative at a Point. For a function f(x), we say that
the derivative of f(x) at x = a is:

f ′(a) = lim
x→a

(
f(x)− f(a)

x− a

)
provided that the limit exists.

If f ′(a) exists, then we say f(x) is differentiable at a. ♢
We can investigate this definition visually. Consider the function f(x) plot-

ted below, where we will look at the point (−1, f(−1)). In the definition of
the limit, we’ll let a = −1, and so consider:

lim
x→−1

(
f(x)− f(−1)

x− (−1)

)
.

Can you estimate the limit of the slope of the tangent line as x → −1?
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Does it look like the limit of the slope between (−1, f(−1)) and (x, f(x))
exists as x → −1? What do you think it is?

2.1.2 Calculating a Bunch of Slopes at Once
Activity 2.1.3 Calculating a Bunch of Slopes. Let’s do this all again,
but this time we’ll calculate the slope at a bunch of different points on the
same function.

Let’s use j(x) = x2 − 4.

(a) Start calculating the following derivatives, using the definition of the
Derivative at a Point:

• j′(−2)

• j′(0)

• j′(1/3)

• j′(−1)

(b) Stop calculating the above derivatives when you get tired/bored of it.
How many did you get through?

(c) Notice how repetitive this is: on one hand, we have to set up a completely
different limit each time (since we’re looking at a different point on the
function each time). On the other hand, you might have noticed that the
work is all the same: you factor and cancel over and over. These limits are
all ones that we covered in Section 1.4 First Indeterminate Forms, and so
it’s no surprise that we keep using the same algebra manipulations over
and over again to evaluate these limits.
Do you notice any patterns, any connections between the x-value you
used for each point and the slope you calculated at that point? You
might need to go back and do some more.

(d) Try to evaluate this limit in general:

j′(a) = lim
x→a

(
j(x)− j(a)

x− a

)
= lim

x→a

(
(x2 − 4)− (a2 − 4)

x− a

)
.

Remember, you know how this goes! You’re going to do the same sorts
of algebra that you did earlier!
What is the formula, the pattern, the way of finding the slope on the j(x)
function at any x-value, x = a?
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(e) Confirm this by using your new formula to re-calculate the following
derivatives:

• j′(−2)

• j′(0)

• j′(1/3)

• j′(−1)

We’re going to try to think about the derivative as something that can be
calculated in general, as well as something that can be calculated at a point.
We’ll define a new way of calculating it, still a limit of slopes, that will be a
bit more general.
Definition 2.1.2 The Derivative Function. For a function f(x), the
derivative of f(x), denoted f ′(x), is:

f ′(x) = lim
∆x→0

(
f(x+∆x)− f(x)

∆x

)
for x-values in the domain of f(x) where this limit exists. ♢

This definition feels pretty different, but we can hopefully notice that this
is really just calculating a slope. Notice, in the following plot, that there is a
significant difference. In the visualization of the Derivative at a Point, the first
point was fixed into place and the second point was the one that we moved
and changed. It was the one with the variable x-value.

Notice in the following visualization that the first point is the one that is
moveable while the second point is defined based on the first one (and the
horizontal difference between the points, ∆x). This means that we don’t need
to define one specific point, and can find the slope of the line tangent to f(x)
at some changing x-value.

2.2 Interpreting Derivatives
What is a derivative?

This can feel like a silly question, since we’re calculating it and getting used
to finding them. But what is it?

In this section, we just want to remind ourselves of what this object is,
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how we should hold it in our minds as we move through the course, and then
practice being flexible with this interpretation.

2.2.1 The Derivative is a Slope
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Activity 2.2.1 Interpreting the Derivative as a Slope. In Activ-
ity 2.1.1 Thinking about Slopes and Activity 2.1.2 Finding a Tangent Line,
we built the idea of a derivative by calculating slopes and using them. Let’s
continue this by considering the function f(x) =

1

x2
.

(a) Use Definition 2.1.1 Derivative at a Point to find f ′(2). What does this
value represent?

(b) We want to plot the line that would be tangent to the graph of f(x) at
x = 2.
Remember that we can write the equation of a line in two ways:

• The equation of a line with slope m that passes through the point
(a, f(a)) is:

y = m(x− a) + f(a).
• The equation of a line with slope m that passes the point (0, b) (this

is another way of saying that the y-intercept of the line is b) is:

y = mx+ b.

Find the equation of the line tangent to f(x) at x = 2. Add it to the
graph of f(x) = 1

x2
below to check your equation.

(c) This tangent line is very similar to the actual curve of the function f(x)
near x = 2. Another way of saying this is that while the slope of f(x) is
not always the value you found for f ′(2), it is close to that for x-values
near 2.
Use this idea of slope to predict where the y-value of our function will be
at 2.01.

Hint. We know that slope is ∆y

∆x
and we’re using the fact that dy

dx
≈ ∆y

∆x
for small values of ∆x.
Here, we have ∆x = 0.01, so can you use the slope to approximate the
corresponding ∆y and figure out the new y-value?

(d) Compare this value with f(2.01) =
1

2.012
. How close was it?
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2.2.2 The Derivative is a Rate of Change
Activity 2.2.2 Interpreting the Derivative as a Rate of Change. This
is going to somewhat feel redundant, since maybe we know that a slope is really
just a rate of change. But hopefully we’ll be able to explore this a bit more
and see how we can use a derivative to tell us information about some specific
context.

Let’s say that we want to model the speed of a car as it races along a strip
of the road. By the time we start measuring it (we’ll call this time 0), the
position the car (along the straight strip of road) is:

s(t) = 73t+ t2,

where t is time measured in seconds and s(t) is the position measured in feet.
Let’s say that this function is only relevant on the domain 0 ≤ t ≤ 15. That
is, we only model the position of the car for a 15-second window as it speeds
past us.

(a) How far does the car travel in the 15 seconds that we model it? What
was the car’s average velocity on those 15 seconds?

(b) Calculate s′(t), the derivative of s(t), using Definition 2.1.2 The Deriva-
tive Function. What information does this tell us about our vehicle?

Hint. What is the rate at which the position (in feet) of the vehicle
changes per unit time (in seconds)? What do we call this, and what are
the units?

(c) Calculate s′(0). Why is this smaller than the average velocity you found?
What does that mean about the velocity of the car?

(d) If we call v(t) = s′(t), then calculate v′(t). Note that this is a derivative
of a derivative.

(e) Find v′(0). Why does this make sense when we think about the difference
between the average velocity on the time interval and the value of v(0)
that we calculated?

(f) What does it mean when we notice that v′(t) is constant? Explain this
by interpreting it in terms of both the velocity of the vehicle as well as
the position.

2.2.3 The Derivative is a Limit
Look back at the definition of Derivative at a Point. The end of it is interesting:
”provided that the limit exists.” We need to keep in mind that this is a limit,
and so a derivative exists or fails to exist whenever that limit exists or fails to
exist.

What are some ways that a limit fails to exist?

• A limit doesn’t exist if the left-side limit and the right-side limit do not
match: Theorem 1.2.4 Mismatched Limits.

• A limit doesn’t exist if it is an Infinite Limit.

What do each of these situations look like when we’re considering the limit of
slopes?
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When Does a Derivative Not Exist?

1. A derivative doesn’t exist at points where the slopes on either side
of the point don’t match.

2. A derivative doesn’t exist at points with vertical tangent lines.

3. A derivative doesn’t exist at points where the function is not con-
tinuous.

2.2.4 The Derivative is a Function
Activity 2.2.3 Interpreting the Derivative as a Function. In Activ-
ity 2.1.3 Calculating a Bunch of Slopes, we calculated the derivative function
for j(x) = x2 − 4. Using the definition of The Derivative Function, we can see
that j′(x) = 2x. Let’s explore that a bit more.

(a) Sketch the graphs of j(x) = x2 − 4 and j′(x) = 2x. Describe the shapes
of these graphs.

(b) Find the coordinates of the point at x = 1
2 on both the graph of j(x) and

j′(x). Plot the point on each graph.

(c) Think back to our previous interpretations of the derivative: how do we
interpret the y-value output you found for the j′ function?

(d) Find the coordinates of another point at some other x-value on both the
graph of j(x) and j′(x). Plot the point on each graph, and explain what
the output of j′ tells us at this point.

(e) Use your graph of j′(x) to find the x-intercept of j′(x). Locate the point
on j(x) with this same x-value. How do we know, visually, that this point
is the x-intercept of j′(x)?

(f) Use your graph of j′(x) to find where j′(x) is positive. Pick two x-values
where j′(x) > 0. What do you expect this to look like on the graph of
j(x)? Find the matching points (at the same x-values) on the graph of
j(x) to confirm.

(g) Use your graph of j′(x) to find where j′(x) is negative. Pick two x-values
where j′(x) < 0. What do you expect this to look like on the graph of
j(x)? Find the matching points (at the same x-values) on the graph of
j(x) to confirm.

(h) Let’s wrap this up with one final pair of points. Let’s think about the
point (−3, 5) on the graph of j(x) and the point (−3,−6) on the graph
of j′(x). First, explain what the value of −6 (the output of j′ at x = −3)
means about the point (−3, 5) on j(x). Finally, why can we not use the
value 5 (the output of j at x = −3) means about the point (−3,−6) on
j′(x)?

2.2.5 Notation for Derivatives
So far we’ve been using the ”prime” notation to represent derivatives: the
derivative of f(x) is f ′(x). We will continue to use this notation, but we’ll
introduce a bunch of other ways of writing notation to represent the derivative.
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Each new notation will emphasize some aspect of the derivative that will serve
to be useful, even though they all represent essentially the same thing.

Function Derivative Derivative at x = a Emphasis

f(x) f ′(x) f ′(a)

The derivative is a function.
The function takes in x-value
inputs and returns the slope of
f at that x-value.

y y′ y′
∣∣∣∣
x=a

We can find slopes on any
curve, not just functions. This
is sometimes also used as a
way to simplify the notation,
especially when we want to
manipulate equations
involving y′.

y dy
dx

dy
dx

∣∣∣∣
x=a

The derivative is a slope. It is
∆y
∆x as ∆x → 0, and we use dx
and dy (called differentials)
to represent ∆x and ∆y as the
limits as ∆x → 0. This
notation is also useful to tell
us what the rate of change is:
what is changing (in this case
y) and what is it changing
based on (in this case x).

f(x) d
dx (f(x)) d

dx (f(x))

∣∣∣∣
x=a

The derivative is an action
that we do to some function.
We can call it an operator,
although we won’t formally
define that term in this text.
We’ll look at this idea more in
Section ??. We can specify
what we are expecting the
input variable to be, based on
the differential dx in the
denominator.

2.3 Some Early Derivative Rules
We are going to break this topic into two parts:

1. We will try to find some common patterns or connections between deriva-
tives and specific functions. For instance, when we use Definition 2.1.2 The
Derivative Function to build a derivative, are there patterns in the work
of evaluating that limit that will allow us to get through the limit work
quickly? Can we group some functions together based on how we might
deal with the limit?

2. We will try to think about derivatives a bit more generally and show how
we can build some basic properties to help us think about differentiating
variations of the functions that we recognize.
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2.3.1 Derivatives of Common Functions
Activity 2.3.1 Derivatives of Power Functions. We’re going to do a bit of
pattern recognition here, which means that we will need to differentiate several
different power functions. For our reference, a power function (in general) is a
function in the form f(x) = a(xn) where n and a are real numbers, and a ̸= 0.

Let’s begin our focus on the power functions x2, x3, and x4. We’re going
to use Definition 2.1.2 The Derivative Function a lot, so feel free to review it
before we begin.

(a) Find d

dx

(
x2
)
. As a brief follow up, compare this to the derivative j′(x)

that you found in Activity 2.1.3 Calculating a Bunch of Slopes. Why are
they the same? What does the difference, the −4, in the j(x) function
do to the graph of it (compared to the graph of x2) and why does this
not impact the derivative?

Hint. Remember that the graph of x2 − 4 has the same shape as the
graph of x2, but has been shifted down by 4 units. Why does this vertical
shift not change the value of the derivative at any x-value?

(b) Find d

dx

(
x3
)
.

Hint. Remember that (x+∆x)3 = (x+∆x)(x+∆x)(x+∆x)

(c) Find d

dx

(
x4
)
.

Hint. Remember that (x+∆x)4 = (x+∆x)(x+∆x)(x+∆x)(x+∆x)

(d) Notice that in these derivative calculations, the main work is in multiply-
ing (x+∆x)n. Look back at the work done in all three of these derivative
calculations and find some unifying steps to describe how you evaluate
the limit/calculate the derivative after this tedious multiplication was
finished. What steps did you do? Is it always the same thing?
Another way of stating this is: if I told you that I knew what (x+∆x)5

was, could you give me some details on how the derivative limit would
be finished?

(e) Finish the following derivative calculation:

d

dx

(
x5
)
= lim

∆x→0

(
(x+∆x)5 − x5

∆x

)
= lim

∆x→0

(
(x5 + 5x4∆x+ 10x3∆x2 + 10x2∆x3 + 5x∆x4 +∆x5)− x5

∆x

)
=⇝ ...

(f) Make a conjecture about the derivative of a power function in general,
d
dx (x

n).

Something to notice here is that the calculation in this limit is really dependent
on knowing what (x+∆x)n is. When n is an integer with n ≥ 2, this really just
translates to multiplication. If we can figure out how to multiply (x+∆x)n in
general, then this limit calculation will be pretty easy to do. We noticed that:

1. The first term of that multiplication will combine with the subtraction
of xn in the numerator and subtract to 0.
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2. The rest of the terms in the multiplication have at least one copy of
∆x, and so we can factor out ∆x and ”cancel” it with the ∆x in the
denominator.

3. Once this has done, we’ve escaped the portion of the limit that was giving
us the 0

0 indeterminate form, and so we can evaluate the limit as ∆x → 0.
The result is just that whatever terms still have at least one remaining
copy of ∆x in it ”go to” 0, and we’re left with just the terms that do not
have any copies of ∆x in them.

Triangle binomial theorem for coefficients.
Theorem 2.3.1 Power Rule for Derivatives.

d

dx
(xn) = nxn−1

We have shown that this is true for n = 2, 3, 4, ..., but this is also true for
any value of n (including n = 1, non-integers, and non-positives). We will
prove this more formally later (in Section ??), and until then we will be free
to use this result.
Example 2.3.2 Let’s confirm this Power Rule for two examples that we are
familiar with.

(a) Find the derivative d
dx (

√
x) using the limit definition of the derivative

function. Note that
√
x = x1/2 and 1

2
√
x
= 1

2x
−1/2.

(b) Find the derivative d
dx

(
1
x

)
using the limit definition of the derivative

function. Note that 1
x = x−1 and − 1

x2 = −x−2.

□
In this activity, we also found one other result.

Theorem 2.3.3 Derivative of a Constant Function. If y = k where k is
some real number constant, then y′ = 0. Another way of saying this is:

d

dx
(k) = 0.

Activity 2.3.2 Derivatives of Trigonometric Functions. Let’s try to
think through the derivatives of y = sin(θ) and y = cos(θ). In this activity,
we’ll look at graphs and try to collect some information about the derivative
functions. We’ll be practicing out interpretations, so if you need to brush up
on Section 2.2 before we start, that’s fine!

(a) The following plot includes both the graph of y = sin(x), and the line
tangent to y = sin(x). Watch as the point where we build the tangent
line moves along the graph, between x = −2π and x = 2π.
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Collect as much information about the derivative, y′, as you can. What
do you know about it? What are some facts about the slopes of the
tangent lines in this animation?

Hint. What kinds of values do the slopes take? Are there some values
that these slopes will never be? Can you find any special points on this
graph where you can actually tell what the slope is?

(b) We’re going to get more specific here: let’s find the coordinates of points
that are on both the graph of y = sin(x) and it’s derivative y′. Remember,
to get the values for y′, we’re really looking at the slope of the tangent
line at that point.

(c) Let’s repeat this process using the y = cos(x) function instead.
The following plot includes both the graph of y = cos(x), and the line
tangent to y = cos(x). Watch as the point where we build the tangent
line moves along the graph, between x = −2π and x = 2π.

Collect as much information about the derivative, y′, as you can. What
do you know about it? What are some facts about the slopes of the
tangent lines in this animation?

Hint. What kinds of values do the slopes take? Are there some values
that these slopes will never be? Can you find any special points on this
graph where you can actually tell what the slope is?
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(d) We’re going to get more specific here: let’s find the coordinates of points
that are on both the graph of y = cos(x) and it’s derivative y′. Remember,
to get the values for y′, we’re really looking at the slope of the tangent
line at that point.

Theorem 2.3.4 Derivatives of the Sine and Cosine Functions.

d

dθ
(sin(θ)) = cos(θ)

d

dθ
(cos(θ)) = − sin(θ)

Proof. In order to show why d

dθ
(sin(θ)) = cos(θ) and d

dx
(cos(θ)) = − sin(θ),

we will work with the limit definitions of both. Consider both:
d

dθ
(sin(θ)) = lim

∆θ→0

(
sin(θ +∆θ)− sin(θ)

∆θ

)
d

dθ
(cos(θ)) = lim

∆θ→0

(
cos(θ +∆θ)− cos(θ)

∆θ

)
Our goal is to re-write the numerators in both of these limits as something
more usable. So far, we have been evaluating these types of limits (First
Indeterminate Forms) using some algebraic manipulations. Instead of using
algebra, we will use geometry.
Consider the unit circle below. We have plotted the angle θ and are reminded
that the point on the circle that corresponds with the terminal side of the
angle θ has coordinates (cos(θ), sin(θ)). We can label the sides of the triangle
pictured below.
Now we consider a second point on the circle, this one formed by the terminal
side of the angle (θ+∆θ). This point has coordinates (cos(θ+∆θ), sin(θ+∆θ)).
Note, below, that we want to find expressions for sin(θ + ∆θ) − sin(θ) and
cos(θ +∆θ)− cos(θ). We can find these geometrically.
Note, then, that the two triangles look to be similar triangles. In fact, we
will find that in the limit as ∆θ → 0, the length h matches the arc length ∆θ
perfectly, and thus lays at a right angle to the terminal side of the angle θ+∆θ.
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Since as ∆θ → 0 we have h → ∆θ, we can find the other side lengths as well:
(sin(θ + ∆θ) − sin(θ)) → ∆θ cos θ and (cos(θ + ∆θ) − cos(θ)) → ∆θ sin θ. So
then (cos(θ +∆θ)− cos(θ)) → −∆θ sin θ.
Consider, then, the limits involved in the derivative calculations that we built
earlier.

d

dθ
(sin(θ)) = lim

∆θ→0

(
sin(θ +∆θ)− sin(θ)

∆θ

)
= lim

∆θ→0

(
∆θ cos(θ)

∆θ

)
= lim

∆θ→0
(cos(θ))

= cos(θ)
d

dθ
(cos(θ)) = lim

∆θ→0

(
cos(θ +∆θ)− cos(θ)

∆θ

)
= lim

∆θ→0

(
−(cos(θ)− cos(θ +∆θ))

∆θ

)
= lim

∆θ→0

(
−∆ sin(θ)

∆θ

)
= lim

∆θ→0
(− sin(θ))

= − sin(θ)

So we have shown that d

dθ
(sin(θ)) = cos(θ) and d

dθ
(cos(θ)) = − sin(θ) as we

claimed. ■
Activity 2.3.3 Derivative of the Exponential Function. We’re going to
consider a maybe-unfamiliar function, f(x) = ex. We’ll explore this function
in a similar way to use thinking about the derivatives of sine and cosine in
Activity 2.3.2: we’ll look at a tangent line at different points, and think about
the slope.

(a) The plot below includes both the graph of y = ex and the line tangent
to y = ex. Watch as the point moves along the curve.

Collect as much information about the derivative, y′, as you can. What
do you know about it? What are some facts about the slopes of the
tangent lines in this animation?



CHAPTER 2. DERIVATIVES 35

Hint. Are there any x-values where the slope is negative? Are there
any where the slope is equal to 0? What happens to the slopes as x
increases?

(b) There is a slightly hidden fact about slopes and tangent lines in this
animation. In the following animation, we’ll add (and label) one more
point. Let’s look at this again, this time noting the point at which this
tangent line crosses the x-axis. This will make it easier to think about
slopes!

What information does this reveal about the slopes?

Hint. Especially it might be helpful to think about the slopes and their
relationship to the y-value of the point we are building the tangent line
at.

(c) Make a conjecture about the slope of the line tangent to the exponen-
tial function y = ex at any x-value. What do you believe the formula/
equation for y′ is then?

Theorem 2.3.5 Derivative of the Exponential Function.

d

dx
(ex) = ex

2.3.2 Some Properties of Derivatives in General
Theorem 2.3.6 Combinations of Derivatives. If f(x) and g(x) are
differentiable functions, then the following statements about their derivatives
are true.

1. Sums: The derivative of the sum of f(x) and g(x) is the sum of the
derivatives of f(x) and g(x):

d

dx
(f(x) + g(x)) =

(
d

dx
f(x)

)
+

(
d

dx
g(x)

)
= f ′(x) + g′(x)

2. Differences: The derivative of the difference of f(x) and g(x) is the
difference of the derivatives of f(x) and g(x):

d

dx
(f(x)− g(x)) =

(
d

dx
f(x)

)
−
(

d

dx
g(x)

)
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= f ′(x)− g′(x)

3. Coefficients: If k is some real number coefficient, then:

d

dx
(kf(x)) = k

(
d

dx
f(x)

)
= kf ′(x)

We can think about each of these properties through the lense of how
combining these functions impacts the slopes. For instance, if we wanted to
visualize the property about coefficients (that d

dx (kf(x)) = k d
dx (f(x))), we

can visualize this coefficient as a scaling factor.

Example 2.3.7 Putting These Together. Find the following derivatives:

(a) d

dx

(
4x5 − 5x

2
+ 6 cos(x)− 1

)
Solution.

d

dx

(
4x5 − 5x

2
+ 6 cos(x)− 1

)
=

d

dx

(
4x5
)
− d

dx

(
5x

2

)
+

d

dx
(6 cos(x))− d

dx
(1)

= 4
d

dx

(
x5
)
− 5

2

d

dx
(x) + 6

d

dx
(cos(x))− d

dx
(1)

= 4(5x4)− 5

2
(1) + 6(− sin(x))− 0

= 20x4 − 5

2
− 6 sin(x)

□

2.4 The Product and Quotient Rules
We saw in Theorem 2.3.6 Combinations of Derivatives that when we want
to find the derivative of a sum or difference of functions, we can just find
the derivatives of each function separately, and then combine the derivatives
back together (by adding or subtracting). This, hopefully, is pretty intuitive:
of course a slope of a sum of things is just the slopes of each thing added
together!

In this section, we want to think about derivatives of product and quotients
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of functions. What happens when we differentiate a function that is really just
two functions multiplied together?
Activity 2.4.1 Thinking About Derivatives of Products. Let’s start
with two quick facts:

d

dx

(
x3
)
= 3x2 and d

dx
(sin(x)) = cos(x).

(a) What is d

dx

(
x3 + sin(x)

)
? What about d

dx

(
x3 − sin(x)

)
?

(b) Based on what you just explained, what is a reasonable assumption about
what d

dx

(
x3 sin(x)

)
might be?

Hint. Does it seem reasonable that we could just multiply the deriva-
tives together, and say that d

dx

(
x3 sin(x)

)
was the same thing as

d

dx

(
x3
)
· d

dx
(sin(x)) ?

(c) Let’s just think about d

dx

(
x3
)

for a moment. What is x3? Can you write
this as a product? Call one of your functions f(x) and the other g(x).
You should have that x3 = f(x)g(x) for whatever you used.

(d) Use your example to explain why, in general, d

dx
(f(x)g(x)) ̸= d

dx
(f(x)) ·

d

dx
(g(x)).

(e) Let’s show another way that we know this. Think about sin(x). We know
two things:

sin(x) = (1)(sin(x)) and d

dx
(sin(x)) = cos(x).

What, though, is d

dx
(1) · d

dx
(sin(x))?

(f) Use all of this to reassure yourself that even though the derivative of a
sum of functions is the sum of the derivatives of the functions, we will
need to develop a better understanding of how the derivatives of products
of functions work.

A thing that I like to think about is this: if d

dx
(f(x)g(x)) = f ′(x)g′(x),

then every function’s derivative would be 0.
In the example with the sin(x) function, we noticed that we could write

the function as (1)(sin(x)). This is true of every function!
If d

dx
(f(x)g(x)) = f ′(x)g′(x), then we could say that for any function f(x)

with a derivative f ′(x):
d

dx
(f(x)) =

d

dx
(1 · f(x))

=
d

dx
(1)

d

dx
(f(x))

= 0 · f ′(x)

= 0.
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This, obviously, can’t be true! We know of tons of functions that have non-zero
slopes...most of them do!

So, we hopefully have some motivation for building a rule to that helps us
think about derivatives of products of functions.

2.4.1 The Product Rule
Activity 2.4.2 Building a Product Rule. Let’s investigate how we might
differentiate the product of two functions:

d

dx
(f(x)g(x)) .

We’ll use an area model for multiplication here: we can consider a rectangle
where the side lengths are functions f(x) and g(x) that change for different
values of x. Maybe x is representative of some type of time component, and
the side lengths change size based on time, but it could be anything.

If we want to think about d
dx (f(x)g(x)), then we’re really considering the

change in area of the rectangle.

(a) Find the area of the two rectangles. The second rectangle is just one
where the input variable for the side length has changed by some amount,
leading to a different side length.

Figure 2.4.1
(b) Write out a way of calculating the difference in these areas.

(c) Let’s try to calculate this difference in a second way: by finding the actual
area of the region that is new in the second rectangle.

Figure 2.4.2
In order to do this, we’ve broken the region up into three pieces. Calculate
the areas of the three pieces. Use this to fill in the following equation:

f(x+∆x)g(x+∆x)−f(x)g(x) = .

(d) We do not want to calculate the total change in area: a derivative is a
rate of change, so in order to think about the derivative we need to divide
by the change in input, ∆x.
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We’ll also want to think about this derivative as an instantaneous rate of
change, meaning we will consider a limit as ∆x → 0. Fill in the following:

d

dx
(f(x)g(x)) lim

∆x→0

(
f(x+∆x)g(x+∆x)− f(x)g(x)

∆x

)
= lim

∆x→0

(
∆x

)

We can split this fraction up into three fractions:

d

dx
(f(x)g(x)) = lim

∆x→0

(
∆x

)

+ lim
∆x→0

(
∆x

)

+ lim
∆x→0

(
∆x

)

(e) In any limit with f(x) or g(x) in it, notice that we can factor part out of
the limit, since these functions do not rely on ∆x, the part that changes
in the limit. Factor these out.
In the third limit, factor out either lim

∆x→0
(f(x+∆x)− f(x)) or

lim
∆x→0

(g(x+∆x)− g(x)).

d

dx
(f(x)g(x)) = f(x) lim

∆x→0

(
∆x

)

+ g(x) lim
∆x→0

(
∆x

)

+ lim
∆x→0

( )(
lim

∆x→0

(
∆x

))

(f) Use Definition 2.1.2 The Derivative Function to re-write these limits.
Show that when ∆x → 0, we get:

f(x)g′(x) + g(x)f ′(x) + 0.
We can investigate this visual a bit more dynamically: see the differences

in area as ∆x → 0. What parts are left, when ∆x → 0? What areas aren’t
visible?



CHAPTER 2. DERIVATIVES 40

Theorem 2.4.3 Product Rule. If u(x) and v(x) are functions that are
differentiable at x and f(x) = u(x) · v(x), then:

d

dx
(f(x)) = u′(x) · v(x) + u(x) · v′(x).

For convenience, this is often written as:

d

dx
(u · v) = u′v + uv′ or d

dx
(u · v) = v

(
du

dx

)
+ u

(
dv

dx

)
.

Example 2.4.4 Use the Product Rule to find the following derivatives.

(a) d

dx

(
x3 sin(x)

)
Hint. Use u = x3 and v = sin(x). Now find u′ and v′, and use:

d

dx
(uv) = u′v + uv′.

(b) d

dx

(
(x3 + 4x)ex

)
(c) d

dx
(
√
x cos(x))

□

2.4.2 What about Dividing?
So we can differentiate a product of functions, and the obvious next question
should be about division: if we needed to build a reasonable way of differenti-
ating a product, shouldn’t we also need to build a new way of thinking about
derivatives of quotients?

A nice thing that we can do is think about division as really just multipli-
cation. For instance, if we want to differentiate d

dx

(
sin(x)
x2

)
, then we can just

think about this quotient as really a product:

d

dx

(
sin(x)
x2

)
=

d

dx

(
1

x2
(sin(x))

)
.

Now we can just apply product rule!

d

dx

(
1

x2
(sin(x))

)
=

d

dx

(
x−2 sin(x)

)
u = sin(x) v = x−2

u′ = cos(x) v′ = −2x−3

d

dx

(
sin(x)x−2

)
= x−2 cos(x) + (−2x−3 sin(x))

=
cos(x)
x2

− 2 sin(x)
x3

This works great! We can always think about quotients as just products
of reciprocals! But the problem is that we can’t always differentiate these
reciprocals (for now). We were able to differentiate 1

x2
by re-writing this as

just a power function (with a negative exponent).
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What about this flipped example:

d

dx

(
x2

sin(x)

)
?

In order for us to do the same thing, we need to re-write this as

d

dx

(
x2 (sin(x))−1

)
but we don’t know how to differentiate (sin(x))−1 (yet).

So let’s try to build a general way of differentiating quotients.
Activity 2.4.3 Constructing a Quotient Rule. We’re going to start with
a function that is a quotient of two other functions:

f(x) =
u(x)

v(x)
.

Our goal is that we want to find f ′(x), but we’re going to shuffle this function
around first. We won’t calculate this derivative directly!

(a) Start with f(x) =
u(x)

v(x)
. Multiply v(x) on both sides to write a definition

for u(x).

u(x) =

(b) Find u′(x).

(c) Wait: we don’t care about u′(x). Right? We care about finding f ′(x)!
Use what you found for u′(x) and solve for f ′(x).

f ′(x) =

(d) This is a strange formula: we have a formula for f ′(x) written in terms

of f(x)! But we said earlier that f(x) =
u(x)

v(x)
.

In your formula for f ′(x), replace f(x) with u(x)

v(x)
.

f ′(x) =

This formula is fine, but a little clunky. We’ll try to re-write it in some nice
ways, but it is a bit more complex than the Product Rule.

Theorem 2.4.5 Quotient Rule. If u(x) and v(x) are differentiable at x

and f(x) =
u(x)

v(x)
then:

f ′(x) =
v(x)u′(x)− u(x)v′(x)

(v(x))2
.

For convenience, this is often written as:

d

dx

(u
v

)
=

vu′ − uv′

v2
.
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Example 2.4.6 Use the Quotient Rule to find the following derivatives.

(a) d

dx

(
sin(x)
x2

)
Once you have this derivative, confirm that it is the same as cos(x)

x2
−

2 sin(x)
x3

, the way that we found it using the Product Rule.

(b) d

dx

(
x2

sin(x)

)

(c) d

dx

(
x+ 4

x2 + 1

)
□

2.4.3 Derivatives of (the Rest of the) Trigonometric Func-
tions

You might remember that of the six main trigonometric functions, we can write
four of them in terms of the other two: here are the different trigonometric
functions written in terms of sine and cosine functions:

tan(x) =
(

sin(x)
cos(x)

)
sec(x) =

(
1

cos(x)

)
cot(x) =

(
cos(x)
sin(x)

)
csc(x) =

(
1

sin(x)

)
Example 2.4.7 Find the derivatives of the remaining trigonometric functions.

(a) d

dx
(tan(x))

Hint. Write d

dx
(tan(x)) = d

dx

(
sin(x)
cos(x)

)
and use the Quotient Rule.

(b) d

dx
(sec(x))

Hint. Write d

dx
(sec(x)) = d

dx

(
1

cos(x)

)
and use the Quotient Rule.

(c) d

dx
(cot(x))

Hint. Write d

dx
(cot(x)) = d

dx

(
cos(x)
sin(x)

)
and use the Quotient Rule.

(d) d

dx
(csc(x))

Hint. Write d

dx
(csc(x)) = d

dx

(
1

cos(x)

)
and use the Quotient Rule.

□
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2.5 The Chain Rule
We’ve been building up some intuition and rules to help us think about differ-
entiating different functions and combinations of functions. We can find deriv-
atives of scaled functions, sums of functions, differences of functions, products
of functions, and also quotients of functions.

In this section, we’ll look at our last operation between functions: compo-
sition.

2.5.1 Composition and Decomposition
An important part of finding derivatives of products and quotients is identifying
the component functions that are being multiplied/divided (often labeled u(x)
or just u and v(x) or just v). From there, we find the derivatives of each of
the component functions, and then use the formula from the Product Rule or
Quotient Rule to put the pieces together.

Thinking about derivatives of composed functions will be the same: we’ll
need to identify what functions are being composed inside of other functions,
and use those pieces in some formulaic way to represent the derivative. On
that note, let’s remind ourselves and practice working with composition (and
decomposition) of functions.

Activity 2.5.1 Composition (and Decomposition) Pictionary. This
activity will involve a second group, or at least a partner. We’ll go through
the first part of this activity, and then connect with a second group/person to
finish the second part.

(a) Build two functions, calling them f(x) and g(x). Pick whatever kinds of
functions you’d like, but this activity will work best if these functions are
in a kind of sweet-spot between ”simple” and ”complicated,” but don’t
overthink this.

(b) Compose g(x) inside of f(x) to create (f ◦ g)(x), which we can also write
as f (g(x)).

(c) Write your composed f (g(x)) function on a separate sheet of paper. Do
not leave any indication of what your chosen f(x) and g(x) are. Just
write your composed function by itself.
Now, pass this composed f (g(x)) to your partner/a second group.

(d) You should have received a new function from some other person/group.
It is different than yours, but also labeled f (g(x)) (with different choices
of f(x) and g(x)).
Identify a possibility for f(x), the outside function in this composition,
as well as a possibility for g(x), the inside function in this composition.
You can check your answer by composing these!

(e) Write a different pair of possibilities for f(x) and g(x) that will still give
you the same composed function, f (g(x)).

(f) Check with your partner/the second group: did you identify the pair of
functions that they originally used?
Did whoever you passed your composed function to correctly identify
your functions?
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