Let’s apply the Ratio Test. We’ll technically be applying this to \(\displaystyle\sum_{k=0}^\infty \frac{3^k|x|^k}{2k+1}\text{.}\)
\begin{align*}
\lim_{k\to\infty} \frac{3^{k+1}|x|^{k+1}}{2(k+1)+1}\cdot \frac{2k+1}{3^k|x|^k}\amp =\lim_{k\to\infty} \frac{3|x|(2k+1)}{2k+3}\\
\amp = 3|x|
\end{align*}
For us to conclude that this series converges, we need the limit from the ratio test to be less than 1.
\begin{equation*}
3|x|\lt 1 \to |x|\lt \frac{1}{3}
\end{equation*}
This series is centered at 0 with a radius of convergence of \(\frac{1}{3}\text{.}\) So we know that this series converges for \(-\dfrac{1}{3}\lt x \lt \dfrac{1}{3}\text{.}\)
Since the Ratio Test is inconclusive when
\(x=-\dfrac{1}{3}\) and
\(x=\dfrac{1}{3}\text{,}\) we’ll test those individually.
When \(x=-\dfrac{1}{3}\)
\begin{align*}
\amp \sum_{k=0}^\infty \frac{3^k\left(-\frac{1}{3}\right)^k}{2k+1} \\
\amp = \sum_{k=0}^\infty \frac{(-1)^k}{2k+1}
\end{align*}
\begin{align*}
\amp \lim_{k\to\infty} \frac{1}{2k+1}\\
\amp = 0
\end{align*}
This series converges!
When \(x=\dfrac{1}{3}\)
\begin{align*}
\amp \sum_{k=0}^\infty \frac{3^k\left(\frac{1}{3}\right)^k}{2k+1} \\
\amp = \sum_{k=0}^\infty \frac{1}{2k+1}
\end{align*}
We can apply the
Rational Comparison Theorem! Since the difference in degrees is 1, we know that this series could be compared to the Harmonic series, and so it diverges.
So the interval of convergence is
\(\left[-\dfrac{1}{3},\dfrac{1}{3}\right)\text{.}\)