Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \newcommand{\R}{\mathbb R}
\newcommand{\ddx}[1]{\frac{d}{dx}\left(#1\right)}
\newcommand{\Ddx}[1]{\dfrac{d}{dx}\left(#1\right)}
\newcommand{\dd}[2]{\frac{d#1}{d#2}}
\newcommand{\Dd}[2]{\dfrac{d#1}{d#2}}
\newcommand{\dydx}{\frac{dy}{dx}}
\newcommand{\Dydx}{\dfrac{dy}{dx}}
\newcommand{\blank}[1]{\underline{\hspace{#1}}}
\newcommand{\dint}{\displaystyle \int}
\newcommand{\va}{┊}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 8.9 Exploration: Infinite Series
Subsection Interesting Infinite Series
We’ve seen a lot of infinite series examples, and we have a lot of tools for how to think about infinite series. Take a look at some more examples that are a bit strange to think about.
Exploration 8.9.1 . Interesting Infinite Series.
(a)
Consider the series
\begin{equation*}
\sum_{k=1}^\infty \frac{1}{D(k)k^p}
\end{equation*}
where \(D(k)\) is the function that returns the number of digits in the number \(k\) (so \(D(9)=1\) and \(D(435)=3\) ), and \(p\) is a real number.
For what values of
\(p\) does this series converge?
(b)
Consider the series
\begin{equation*}
\sum_{k=1}^\infty \frac{1}{F(k)k^p}
\end{equation*}
where \(F(k)\) is the function that returns the \(k\) th Fibbonacci number, and \(p\) is a real number. As a reminder, the Fibbonacci sequence is:
\begin{equation*}
1,1,2,3,5,8,13,21...
\end{equation*}
where \(F(k)=F(k-1)+F(k-2)\text{.}\)
For what values of
\(p\) does this series converge?